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Abstract

We calculate the energy dissipated into collective modes during the descent from saddle to scission

for the most likely fission mode of 240Pu, with respect to the quadrupole and octupole degrees of

freedom. The energy dissipated in fission directly impacts calculations of the spectrum of particles

emitted by the fragments. The results presented here rely on the Bohr approximation to the time-

dependent generator-coordinate method in order to describe the evolution of the fissioning system

to scission. A comparison of the normalized flux in a two-dimensional calculation, with respect

to the quadrupole and octupole modes, and a one-dimensional calculation along the most likely

fission path is used to deduce the energy dissipated into transverse collective modes. A value of

3.4 ± 0.1 MeV is obtained for the collective energy dissipation.
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I. INTRODUCTION

One of the outstanding questions in nuclear fission is what fraction of the energy gained

in the descent from saddle to scission is converted to pre-scission kinetic energy, and what

fraction is dissipated into excitation energy of the fragments. An accurate accounting of this

energy partition is essential to the proper calculation of fission-fragment properties [1, 7].

This question was previously considered in the case of fission with respect to the quadrupole

(q20) and hexadecapole (q40) collective degrees of freedom by Berger et al. [2, 6]. We present

here a more general approach to the calculation of the dissipation energy and apply it for

the first time to the quadrupole and octupole collective coordinates. Although we illustrate

the method for the most likely fission in 240Pu, it can readily be applied to any fission mode.

The problem is illustrated in Fig. 1 which shows a schematic fission saddle as a function

of generic coordinates x and y. The coordinate y represents the “longitudinal” degree of

freedom of the nucleus that varies as the system moves toward scission (e.g., the separa-

tion distance between pre-fragments), and x represents the remaining transverse degrees

of freedom. In a one-dimensional problem, where transverse motion in the x coordinate is

not allowed, we expect the full energy available at the exit point to the right of the plot,

∆E = E1D − V , will be converted to pre-scission kinetic energy in the y coordinate.

Any motion in the transverse x coordinate can take away from the pre-scission kinetic

energy and will appear as excitation energy of the fragments after scission. Therefore the

amount of energy dissipated into the transverse degree of freedom in Fig. 1 can be deduced

by comparing calculations in 1D to those in higher dimensions. The central concept we

demonstrate and take advantage of in the present work is that if the probability flux of the

wave function representing the fissioning nucleus, normalized by the squared amplitude of

that wave function is constant in time at some “exit” (or fission) point, then the dissipated

energy can be obtained from an analysis of the flux at that point alone, without the need

to examine the wave function over the remaining full set of collective coordinates. This

powerful result, which follows from the WKB approximation, leads to a tremendous simpli-

fication of the problem. The object of the present paper, therefore, is to first identify the

longitudinal and transverse coordinates for a fissioning nucleus described by its quadrupole

(q20) and octupole (q30) moments, and to then deduce the energy dissipated in the transverse

coordinate by comparing 1D and 2D calculations at the exit point.
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Figure 1: Schematic potential energy surface for fission with respect to longitudinal (x) and trans-

verse (y) coordinates. An amount of energy E1D − V , to be partitioned between kinetic and

excitation energies of the fragments, is made available in the descent from saddle to scission.

II. THEORY

The derivation of the necessary formalism is broken down into several steps below. In sec-

tion IIA we determine the direction in the (q20, q30) plane which gives a maximum probability

flux at an exit point of interest. We take the maximum-flux direction in the (q20, q30) plane

as the longitudinal fission direction. In section IIB we transform the collective Schrödinger

equation from (q20, q30) to the new set of fission coordinates (x, y) aligned with the longi-

tudinal and transverse fission directions. In section IIC, we calculate a normalized flux in

the longitudinal fission direction. Finally, 1D and 2D calculations of the normalized flux

are combined in section IID, and the expression for the energy dissipated into transverse

collective modes is derived.

A. Calculation of the maximum probability flux

Starting from the continuity equation (Eq. (A3) derived in appendix A),

∂

∂t

¨

V

dq20dq30Ψ
∗Ψ = −

¨

V

dq20dq30∇ ·~j
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we note that the integral on the right-hand side (excluding the minus sign) is the probability

flux leaving region V . This integral can be further expanded,

¨

V

dq20dq30∇ ·~j =

¨

V

dq20dq30

(

∂j2

∂q20

+
∂j3

∂q30

)

For a fixed q30 we integrate q20 between the limits of the contour S enclosing region V and

likewise for fixed q20 we integrate between the limits in q30, which yields

¨

V

dq20dq30

(

∂j2

∂q20
+

∂j3

∂q30

)

=

ˆ

dq30

[

j2

(

q
(max)
20 , q30

)

− j2

(

q
(min)
20 , q30

)]

+

ˆ

dq20

[

j3

(

q20, q
(max)
30

)

− j3

(

q20, q
(min)
30

)]

and where the points
(

q
(max)
20 , q30

)

,
(

q
(min)
20 , q30

)

,
(

q20, q
(max)
30

)

, and
(

q20, q
(min)
30

)

are all located

on the contour S. By construction, we choose region V such that the current vanishes at

the lower bound of the contour, and we are therefore left with

¨

V

dq20dq30∇ ·~j =

ˆ

dq30j2

(

q
(max)
20 , q30

)

+

ˆ

dq20j3

(

q20, q
(max)
30

)

(1)

We focus on a small segment δS along the contour S and calculate the flux δΦ through

that segment. Using Eq. (1) and assuming the segment is small enough that the current is

constant all along its length,

δΦ = j3δq20 − j2δq30 (2)

The minus sign in this expression is due to the geometry of the problem, shown in Fig.

2, which requires the segment δS to have a negative slope (and therefore δq30 < 0) for a

positive flux in the q20 direction.

Given an initial segment with slope m ≡ δq30/δq20, we wish to rotate that segment to

find the orientation that yields the maximum flux. In order to perform this rotation, we

must work in a dimensionless coordinate system. Therefore, we introduce scaling factors

∆q20 and ∆q30 and choose them so as to preserve the value of the slope of segment δS,

m =
δq30/∆q30

δq20/∆q20
(3)

in other words, although the units of ∆q20 and ∆q30 are different, their numerical values

must remain the same, and we choose them to be ∆q20 = 1 b and ∆q30 = 1 b3/2, without
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Figure 2: Geometry of the segment δS in the (q20, q30) coordinate system (see text for explanation).

loss of generality. We can then write

δq20

∆q20

≡ ε cos θ

δq30

∆q30
≡ ε sin θ (4)

where ε is dimensionless. We show in section IID that the final result, the calculated

dissipation energy, does not depend on the value of ε. The flux in Eq. (2) is now

δΦ = ε (j3∆q20 cos θ − j2∆q30 sin θ)

and is maximized when

tan θmax = −
j2∆q30

j3∆q20
(5)

In the remainder of this report, we will take this angle as the longitudinal direction of fission.

For this angle, we find the maximum positive flux

δΦmax = ε

√

(j3∆q20)
2 + (j2∆q30)

2

With the angle θmax given in Eq. (5), we have thus defined a new set of coordinates (x, y),

with the x axis taken along the direction of maximum flux at each (q20, q30) point (which we
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interpret as the longitudinal fission coordinate), and the y axis (representing the transverse

fission coordinate) perpendicular to it. The coordinate transformation from (q20, q30) to

(x, y) is derived in appendix , and consists of a scaling and a rotation given by Eq. (B1),





x

y



 =





− sin θmax

ε∆q20

q20 + cos θmax

ε∆q30

q30

− cos θmax

ε∆q20

q20 −
sin θmax

ε∆q30

q30





B. The Schrödinger equation in the fission coordinates

Starting from the Schrödinger equation in the (q20, q30) coordinates,

[

−
1

2

∑

i,j=2,3

∂

∂qi,0

Bi,j
∂

∂qj,0

+ V (q20, q30)

]

Ψ (q20, q30, t) = ~i
∂

∂t
Ψ (q20, q30, t) (6)

we re-write this equation in the (x, y) coordinates defined by Eq. (B1). First, we calculate

the Jacobian of the transformation

J ≡

∣

∣

∣

∣

∂ (q20, q30)

∂ (x, y)

∣

∣

∣

∣

= ε2∆q20∆q30

and introduce the normalized wave function solution g (x, y, t) where

Ψ (q20, q30, t) ≡ J−1/2g (x, y, t)

Next, we relate Bαβ (x, y), where α and β stand for either of the new coordinates x and y,

to Bi,j (q20, q30) by

Bij (q20, q30) ≡
∑

α,β=x,y

Bαβ (x, y)
∂qi,0

∂α

∂qj,0

∂β
(7)

Then,

∑

i,j

∂

∂qi,0
Bi,j

∂

∂qj,0
=
∑

i,j

(

∑

α′

∂α′

∂qi,0

∂

∂α′

)

∑

α,β

Bαβ
∂qi,0

∂α

∂qj,0

∂β

(

∑

β′

∂β ′

∂qj,0

∂

∂β ′

)

=
∑

α,β

∑

α′,β′

(

∑

i

∂α′

∂qi,0

∂qi,0

∂α

)

∂

∂α′
Bαβ

(

∑

j

∂β ′

∂qj,0

∂qj,0

∂β

)

∂

∂β ′

=
∑

α,β

∂

∂α
Bαβ

∂

∂β
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and q. (6) becomes

[

−
1

2

∑

α,β=x,y

∂

∂α
Bαβ

∂

∂β
+ V (x, y)

]

g (x, y, t) = ~i
∂

∂t
g (x, y, t) (8)

with V (x, y) = V (x (q20, q30) , y (q20, q30)). In closing, we note that Eq. (7) can be inverted,

Bαβ (x, y) =
∑

i,j=2,3

Bij (q20, q30)
∂α

∂qi,0

∂β

∂qj,0

from which we can calculate the inertia tensor in the new coordinates (x, y). In particular,

we will need

Bxx = B22

(

− sin θ

ε∆q20

)2

− 2B23
cos θ sin θ

ε2∆q20∆q30

+ B33

(

cos θ

ε∆q30

)2

(9)

C. The normalized flux in the longitudinal fission direction

The current in the (x, y) fission coordinates is derived in appendix C. We now wish to

calculate the flux through a line segment in the (x, y) plane corresponding to the probability

current ~j. We follow the same approach used in section IIA, but this time for a segment

with slope ∆y/∆x. The equation of the supporting line is

f (x, y) = ∆x (y − y0) − ∆y (x − x0) = 0

where (x0, y0) is a point on that line (e.g., the point A). A normal vector to that line is then

given by

~n = ∇f

=





−∆y

∆x





and its norm is

|~n| =
√

∆x2 + ∆y2

The flux through the line segment is then given by

∆Φ = ~j ·
~n

|~n|
∆s
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where ∆s =
√

∆x2 + ∆y2 is the length of the segment. Thus, we have

∆Φ = −jx∆y + jy∆x

Using Eq. (D1), we write the components of the current explicitly,

jx = ε∆q20∆q30

[

−
sin θ

∆q20

j2 +
cos θ

∆q30

j3

]

jy = ε∆q20∆q30

[

−
cos θ

∆q20
j2 −

sin θ

∆q30
j3

]

If we now choose θ to be the angle for which the flux is maximized, given by Eq. (5), then

we have

jy = 0

so that the direction of maximum flux is entirely along the x axis, as expected. In that case,

jx = ±ε∆q20∆q30

√

(

j2

∆q20

)2

+

(

j3

∆q30

)2

Then, the (positive) flux is given by

∆Φ = ∆yε∆q20∆q30

√

(

j2

∆q20

)2

+

(

j3

∆q30

)2

Since we are only interested in a specific division of the nucleus (the most likely fission mode

in the present work) at a given exit point, rather than the entire set of possible fragments,

the flux ∆Φ can vary significantly over time. A more stable quantity, as we will see in section

IID, can be obtained by normalizing the flux by the squared amplitude of the collective wave

function. We can calculate this normalized flux,

∆ΦN ≡
∆Φ

´

dy |g (x, y, t)|2

where the integral in the denominator is carried out over the segment length ∆y. For a

length ∆y sufficiently small that g (x, y, t) can be considered constant, we have

∆ΦN =
1

ε |Ψ (q20, q30, t)|
2

√

(

j2

∆q20

)2

+

(

j3

∆q30

)2

(10)
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D. Flux in the WKB approximation

Suppose the inertia and potential in Eq. (8) are essentially constant with respect to x

and y, and that the motion is entirely in the x direction. The Schrödinger equation then

reduces to

[

−
1

2
Bxx

∂2

∂x2
+ V

]

g (x, t) = ~i
∂

∂t
g (x, t) (11)

and the solution is the plane wave

g (x, t) = N exp

[

i

(

kxx −
E1D

~
t

)]

(12)

where N is a normalization constant, kx is the wave number, and E1D is the energy of the

solution. Inserting Eq. (12) into Eq. (11) leads to the relation

1

2
Bxk

2
x + V = E1D

or

kx =

√

2

Bxx

(E1D − V )

The probability current in this case is

jx =
1

2~i
Bxx

(

g∗
∂

∂y
g − g

∂

∂y
g∗

)

=
Bxx

~
N 2kx

and the normalized flux is

∆Φ
(1D)
N =

jx∆y

|g (x, y, t)|2 ∆y

=
Bxx

~
kx

=
1

~

√

2Bxx (E1D − V ) (13)

where the inertia Bxx is given explicitly by Eq. (9). Note that the normalized flux ∆Φ
(1D)
N

does not depend on the value of N . This is a very important property, because it shows that

if the WKB approximation is valid, then the normalized flux is insensitive to fluctuations

and changes in the wave function.
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In order to determine the amount of dissipated energy, we interpret the flux ∆ΦN given

by Eq. (10) using the 1D formula in Eq. (13). Unlike the 1D case however, we do not

expect the full available energy E1D − V to be converted to kinetic energy, but rather only

a portion E2D − V , with the difference dissipated into the transverse degrees of freedom.

Then the ratio of normalized fluxes is

∆ΦN

∆Φ
(1D)
N

=

√

E2D − V

E1D − V
(14)

from which we deduce the energy in the 2D case

E2D = V +

(

∆ΦN

∆Φ
(1D)
N

)2

(E1D − V )

and the dissipated energy is

∆Ecoll ≡ E1D − E2D (15)

This dissipated energy is the quantity of interest we calculate in this paper. Note that,

because of Eq. (9), Bxx ∝ ε−2 and therefore ∆Φ
(1D)
N ∝ ε−1 and furthermore, by Eq. (10),

∆ΦN ∝ ε−1 as well. Therefore the result in Eq. (15), which follows from the ratio of fluxes

in Eq. (14), does not depend on ε.

III. RESULTS

We have calculated the energy dissipated into the transverse collective degrees for 240Pu

using the approach described above. The time-dependent calculation of fission for this

nucleus was performed using the approach outlined in [4]. In order to calculate the 2D flux,

we have solved the equations of a Time-Dependent Generator-Coordinate Method (TDGCM)

in the Bohr approximation [5]. An initial state just above the first barrier and with energy

E1D = -1791.9 MeV was evolved to scission, and the calculations were carried out to a time

t = 6.1 zs [9], when only ≈ 1% of the initial wave packet has still not fissioned. The analysis

of the resulting flux was performed at the exit point (q20, q30) =
(

368 b, 60 b3/2
)

, the last

point along the fission valley before scission occurs. In the vicinity of this exit point, the

potential energy and inertia tensor are fairly constant (within a few %), and the WKB

approximation used in section IID is therefore justified.
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Figure 3: Normalized flux at the exit point (q20, q30) =
(

368 b, 60 b3/2
)

, plotted as a function of

time. The vertical dashed lines delimit a region (0.6 zs ≤ t ≤ 4.0 zs) where the normalized flux is

relatively constant in time, and can therefore be used in the analysis of the energy dissipation.

The normalized flux ∆ΦN calculated with Eq. (10) is plotted in Fig. 3 as a function of

time. The flux shows significant fluctuations at early times (t . 0.6 zs) before a sufficiently

large fraction of the wave packet has reached the exit point, and at late times (t & 4.0 zs)

when nearly all the wave packet has passed the exit points and only a trickle (about 3.6%)

is left to contribute to the flux. In between those times, however, the normalized flux is

remarkably constant. It is this constant behavior which justifies, a posteriori, the WKB

approximation we use in our interpretation (Eq. (13)). Note that the fission times obtained

in this calculation, ≈ 4 × 10−21 s, are essentially identical to those found by Berger et al.

[6].

Combining the data for those times (0.6 zs ≤ t ≤ 4.50 zs) when the normalized flux

is constant, we extract 35 individual estimates, one for each time step of 0.1 zs, of the

dissipation energy using Eq. (15). The mean and standard deviation of these 35 values are
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3.4 and 0.5, respectively, from which we deduce an average collective dissipation energy

∆E = 3.4 ± 0.1

where the uncertainty is the standard deviation of the sample mean. This is the energy of the

descent from saddle to scission in the (q20, q30) coordinates that would appear as excitation

energy of the fragments.

IV. CONCLUSION

We have calculated a value of 3.4 ± 0.1 MeV for the energy dissipated in the transverse

collective degree of freedom for 240Pu fission in the (q20, q30) plane. This value was obtained

by comparing the normalized flux of the collective wave packet in one and two dimensions.

This result is similar to the 2.1 MeV dissipation calculated by Berger et al. [6] in the (q20, q40)

plane. The dissipation energy calculated in the present work, combined with that calculated

by Berger et al. supports the conjecture that each additional collective degree of freedom in

fission contributes ∼ 2 MeV to the dissipated energy. The calculations presented here could

be improved in the future by expanding the analysis to higher dimensions, e.g. comparing

TDGCM calculations in the (q20, q30, q40) plane to the one-dimensional case. Eventually,

multi-dimensional calculations including the coupling with intrinsic excitations could provide

an accurate estimate of the entire energy dissipated in all relevant transverse degrees of

freedom.

Appendix A: Continuity equation in the (q20, q30) coordinates

Consider the collective wave function Ψ (q20, q30, t). We wish to calculate the correspond-

ing probability flux through a given length of arc. We begin with the Schrödinger represen-

tation of the wave function

Ψ (q20, q30, t) = e−iHt/~Ψ (q20, q30, 0)

from which we obtain the standard time-dependent Schrödinger equation

~i
∂

∂t
Ψ (q20, q30, t) = HΨ (q20, q30, t)
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and its complex conjugate is

−~i
∂

∂t
Ψ∗ (q20, q30, t) = HΨ∗ (q20, q30, t)

Combining these last two equations, we find

~i
∂

∂t
Ψ∗Ψ = Ψ∗HΨ − ΨHΨ∗

Integrating over a volume V in the (q20, q30) coordinates,

~i
∂

∂t

¨

V

dq20dq30Ψ
∗Ψ =

¨

V

dq20dq30 (Ψ∗HΨ − ΨHΨ∗)

On the right-hand side, we write the Hamiltonian as the sum of kinetic T and potential V

terms, and cancel the potential term in the difference,

~i
∂

∂t

¨

V

dq20dq30Ψ
∗Ψ =

¨

V

dq20dq30 (Ψ∗TΨ − ΨTΨ∗) (A1)

The kinetic energy operator is

T = −
1

2

∑

i,j=2,3

∂

∂qi,0

Bi,j
∂

∂qj,0

≡ −
1

2
∇ · (B∇)

where B is the symmetric inertia tensor

B =





B22 B23

B23 B33





We use the following identity for the divergence

∇ ·
(

f ~F
)

= (∇f) · ~F + f∇ · ~F

to write

Ψ∗TΨ − ΨTΨ∗ = −
1

2
[∇ · (Ψ∗B∇Ψ) − (∇Ψ∗) · (B∇Ψ)] +

1

2
[∇ · (ΨB∇Ψ∗) − (∇Ψ) · (B∇Ψ∗)]

we can check that the difference

(∇Ψ∗) · (B∇Ψ) − (∇Ψ) · (B∇Ψ∗) = 0
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by explicit substitution of B, and we are therefore left with

Ψ∗TΨ − ΨTΨ∗ = −
1

2
∇ · (Ψ∗B∇Ψ − ΨB∇Ψ∗) (A2)

Next, we define the probability current

~j =
1

2~i
B (Ψ∗∇Ψ − Ψ∇Ψ∗)

and return to Eqs. (A1) and (A2) to write the continuity equation in its integral form,

∂

∂t

¨

V

dq20dq30Ψ
∗Ψ = −

¨

V

dq20dq30∇ ·~j (A3)

Appendix B: Change of coordinates

We now derive explicitly the transformation to the system of coordinates with axes along

the direction of maximum flux and perpendicular to it defined by the angle θmax in the pre-

vious section. We begin with the transformation of q20 and q30 to dimensionless coordinates

using the scaling factors ∆q20 and ∆q30 in Eq. (4),

u ≡
q20

∆q20

v ≡
q30

∆q30

Then, the equation of the line going through a given point
(

q
(0)
20 , q

(0)
30

)

and with slope

δq30/δq20 is

δq20

(

q30 − q
(0)
30

)

− δq30

(

q20 − q
(0)
20

)

= 0

or, in the dimensionless coordinates (u, v),

ε cos θ (v − v0) − ε sin θ (u − u0) = 0

The left-hand side of this equation defines a function

f (u, v) ≡ ε cos θ (v − v0) − ε sin θ (u − u0)

whose gradient gives a vector normal to the line is given by

~n = ∇f

=





−ε sin θ

ε cos θ
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and with a tangent vector

~t =





−ε cos θ

−ε sin θ





where the sign is chosen so that for θ = −π/2, the vector ~t is in the direction of the positive

q30 axis. We now wish to find the transformation A to the system of coordinates with x

along the longitudinal fission direction and y along the transverse direction. In other words,

A~n =





1

0





and

A~t =





0

1





The solution to the resulting system of equations is

A =
1

ε





− sin θ cos θ

− cos θ − sin θ





The new set of coordinates (x, y) is therefore related to the coordinates (q20, q30) by





x

y



 =
1

ε





− sin θ cos θ

− cos θ − sin θ









q20/∆q20

q30/∆q30





=





− sin θ
ε∆q20

q20 + cos θ
ε∆q30

q30

− cos θ
ε∆q20

q20 −
sin θ

ε∆q30

q30



 (B1)

Appendix C: Continuity equation in the fission coordinates

Next, we calculate the probability current from Eq. (8) and its complex conjugate in the

standard way,

−
1

2

[

g∗

(

∑

α,β

∂

∂α
Bαβ

∂

∂β

)

g − g

(

∑

α,β

∂

∂α
Bαβ

∂

∂β

)

g∗

]

= ~i
∂

∂t
g∗g (C1)

Noting that

∂

∂α
g∗Bαβ

∂

∂β
g =

(

∂g∗

∂α

)

Bαβ

(

∂g

∂β

)

+ g∗
∂

∂α
Bαβ

∂

∂β
g

15



and, similarly,

∂

∂α
gBαβ

∂

∂β
g∗ =

(

∂g

∂α

)

Bαβ

(

∂g∗

∂β

)

+ g
∂

∂α
Bαβ

∂

∂β
g∗

so that

g∗
∂

∂α
Bαβ

∂

∂β
g − g

∂

∂α
Bαβ

∂

∂β
g∗ =

∂

∂α
Bαβ

(

g∗
∂g

∂β
− g

∂g∗

∂β

)

an then we can rewrite Eq. (C1) as

−
1

2~i

∑

α

∂

∂α

∑

β

Bαβ

(

g∗
∂g

∂β
− g

∂g∗

∂β

)

=
∂

∂t
g∗g (C2)

We define the probability current ~j with components

jα ≡
1

2~i

∑

β

Bαβ

(

g∗
∂g

∂β
− g

∂g∗

∂β

)

(C3)

so that Eq. (C2) becomes the well-known continuity equation

∇ ·~j +
∂ρ

∂t
= 0 (C4)

where

ρ (x, y, t) ≡ g∗ (x, y, t) g (x, y, t)

Appendix D: Coordinate transformation of the probability current

Consider the probability current in coordinates (x, y) and with components given by Eq.

(C3),

jα ≡
1

2~i

∑

β

Bαβ

(

g∗
∂g

∂β
− g

∂g∗

∂β

)

the corresponding current in the (q20, q30) coordinates has components

jm ≡
1

2~i

∑

n

Bmn

(

Ψ∗
∂Ψ

∂qn,0

− Ψ
∂Ψ∗

∂qn,0

)

and we wish to find a relation connecting these components in the two different coordinate

systems. For this, we calculate the quantity

∑

m

∂α

∂qm,0
jm =

1

2~i

∑

m,n

Bmn
∂α

∂qm,0

∑

β

∂β

∂qn,0

(

Ψ∗
∂Ψ

∂β
− Ψ

∂Ψ∗

∂β

)

=
1

J

1

2~i

∑

β

Bαβ

(

g∗
∂g

∂β
− g

∂g∗

∂β

)

=
jα

J
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or,

jα = J
∑

m

∂α

∂qm,0
jm (D1)
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